MACHINE LEARNING Y DEEP LEARNING

MACHINE LEARNING Y DEEP LEARNING

USANDO PYTHON, SCIKIT Y KERAS

BOBADILLA, JESÚS

$ 69,000.00

U$ 17,66 16,22 €

Disponible
Editorial:
EDICIONES DE LA U
Año de edición:
2021
Materia
Computacion
ISBN:
978-958-792-145-8
EAN:
9789587921458
Páginas:
294
Encuadernación:
Tapa blanda
$ 69,000.00

U$ 17,66 16,22 €

Disponible
Añadir a favoritos

ACERCA DEL AUTOR
CAPÍTULO 1. INTRODUCCIÓN
1.1 TIPOS DE MACHINE LEARNING
1.2 TRATANDO CON DATOS
1.3 MEDICIÓN DE LA CALIDAD
1.4 MEJORA DEL MODELO
CAPÍTULO 2. DATASETS
2.1 DATASET DE DIABETES (REGRESIÓN)
2.2 DATASET BOSTON (REGRESIÓN)
2.3 DATASET DE LIRIOS (CLASIFICACIÓN)
2.4 DATASET DE CÁNCER DE PECHO (CLASIFICACIÓN)
2.5 DATASET DE VINOS (CLASIFICACIÓN)
2.6 DATASET GENERADO MAKE_BLOBS (CLASIFICACIÓN)
2.7 DATASET GENERADO MAKE_REGRESSION (REGRESSION)
2.8 DATASET GENERADO MAKE_MOONS (CLASIFICACIÓN Y
CLUSTERING)
2.9 DATASET MNIST (CLASIFICACIÓN)
2.10 CARAS DE OLIVETTI (CLASIFICACIÓN)
2.10.1 Caras etiquetadas “in the wild”: LFW (clasificación)
CAPÍTULO 3. REGRESIÓN
3.1 MODELOS DE REGRESIÓN
3.1.1 Regresión lineal (desde cero)
3.1.2 Regresión lineal usando SciKit
3.1.3 Regresión Polinómica (desde cero)
3.1.4 Regresión polinómial desde cero (enfoque de gradiente descendente
3.1.5 Regresión de los K vecinos más cercanos (K-Nearest Neighbors)
o KNN) desde cero
3.1.6 Regresión por K vecinos más cercanos (KNN) usando librerías
SciKit
3.1.7 Regresión Kernel Gaussiana (Gaussian Kernel Regression)
desde cero
3.1.8 Regresión Kernel Gaussiana usando librerías SciKit
3.1.9 Regresión Ridge (forma cerrada)
3.1.10 Ridge Regression usando librerías de SciKit
3.1.11 Regresión Lasso usando librerías de SciKit
3.1.12 Regresión Elastic Net usando librerías de SciKit
3.2 ANÁLISIS DE CALIDAD EN LA REGRESIÓN LINEAL
CAPÍTULO 4. CLASIFICACIÓN
4.1 MODELOS DE CLASIFICACIÓN
4.1.1 Regresión Logística (Logistic Regression) desde cero
4.1.2 Regresión Logística (clasificación) usando librerías SciKit
4.1.3 Clasificación K vecinos más cercanos (K Nearest Neighbours)
4.1.4 Support Vector Machines (SVM) using SciKit libraries
4.1.5 Árboles de Decisión usando librerías de SciKit
4.1.6 Random Forest usando librerías de SciKit
4.2 ANÁLISIS DE CALIDAD DE LOS MÉTODOS DE CLASIFICACIÓN
CAPÍTULO 5. CLUSTERING
5.1 ALGORITMOS DE CLUSTERING
5.1.1 K-Means (K-medias) desde cero
5.1.2 K means usando las librerías de SciKit
5.1.3 DBSCAN basado en densidad, desde cero
5.1.4 DBSCAN basado en densidad, usando SCiKit
5.1.5 Clustering Acumulativo (Agglomerative clustering), usando SciKit
5.2 MEDIDA DE CALIDAD DEL CLUSTERING
CAPÍTULO 6. REDUCCIÓN DE DIMENSIONES
6.1 FACTORIZACIÓN MATRICIAL USANDO SCIKIT
6.2 ANÁLISIS DE COMPONENTES PRINCIPALES (PCA),
USANDO SCIKIT
CAPÍTULO 7. REDES NEURONALES
7.1 LA NEURONA BIOLÓGICA
7.2 LA NEURONA ARTIFICIAL
7.3 APRENDIZAJE HEBBIANO
7.4 EL PERCEPTRÓN
7.5 REDES MULTICAPA Y EL ALGORITMO BACK PROPAGATION
7.6 DEMOSTRACIÓN DEL ALGORITMO BACK PROPAGATION
CAPÍTULO 8. CLASIFICACIÓN USANDO REDES NEURONALES
8.1 CLASIFICACIÓN DEL DATASET MNIST
8.2 CLASIFICACIÓN DEL DATASET FASHION MNIST
8.3 CLASIFICACIÓN DEL DATASET CIFAR 100
CAPÍTULO 9. REDES CONVOLUCIONALES.
CONCEPTOS BÁSICOS
CAPÍTULO 10. CLASIFICACIÓN USANDO REDES CONVOLUCIONALES
EN DATASETS SENCILLOS
10.1 CLASIFICACIÓN DEL DATASET MNIST
10.2 CLASIFICACIÓN DEL DATASET CIFAR 100
10.3 CLASIFICACIÓN DEL DATASET FASHION MNIST
CAPÍTULO 11. GENERADORES DE DATOS
11.1 CLASIFICACIÓN USANDO EL DATASET: DOGS AND CATS
11.2 DATA GENERATORS
CAPÍTULO 12. ENRIQUECIMIENTO DE DATOS (DATA AUGMENTATION)
12.1 ENRIQUECIMIENTO DE DATOS. ENFOQUE I
12.2 ENRIQUECIMIENTO DE DATOS. ENFOQUE II
CAPÍTULO 13. VISUALIZACIÓN DE LAS CAPAS OCULTAS
13.1 MAPAS DE ACTIVACIÓN EN EL DATASET ‘DOGS AND CATS’
13.2 MAPAS DE ACTIVACIÓN EN EL DATASET MNIST
CAPÍTULO 14. APRENDIZAJE POR TRANSFERENCIA (TRANSFER
LEARNING)
14.1 REUTILIZACIÓN DEL MODELO VGG16
14.2 REFINADO DEL MODELO VGG16
14.3 TRANSFER LEARNING EN DOS ETAPAS
CAPÍTULO 15. AUTOENCODERS
15.1 AUTOENCODER DE UNA SOLA CAPA
15.2 AUTOENCODER EN VARIAS CAPAS
15.3 AUTOENCODERS CONVOLUCIONALES
15.4 VISUALIZACIÓN DEL ESPACIO MULTIDIMENSIONAL
CAPÍTULO 16. APRENDIZAJE GENERATIVO
MATERIAL ADICIONAL

El objetivo del machine learning es que los sistemas informáticos sean capaces de aprender a partir de los datos, emulando de esta manera las capacidades humanas. El Aprendizaje Profundo (Deep Learning) es el área más prometedora del machine learning. Los modernos sistemas de reconocimiento facial, conducción automática, chatbots, comportamiento de los videojuegos, etc. se llevan a cabo haciendo uso de técnicas de deep learning.
En este libro se explican los conceptos más relevantes tanto de machine learning como de deep learning. Ambos bloques se pueden abordar de manera independiente y en cualquier orden. Se aportan multitud de ejemplos programados en Python y explicados desde cero, con gráficos representativos. También se hace uso de las bibliotecas Scikit y Keras. Cualquier lector con conocimientos de programación podrá entender los conceptos y los ejemplos que se exponen en el libro:

Regresión
Clasificación
Clustering
Reducción de Dimensionalidad
Redes Neuronales
Redes Convolucionales (Convolutional Neural Networks)
Enriquecimiento de datos (Data Augmentation)
Generadores de Datos
Aprendizaje por Transferencia (Transfer Learning)
Autoencoders
Visualización de capas ocultas
Aprendizaje Generativo (Generative Learning)

Artículos relacionados

  • DART Y FLUTTER - APRENDE LAS BASES DEL DESARROLLO MULTIPLATAFORMA
    LUJÁN CASTILLO, JOSÉ DIMAS
    ¿Listo para embarcarte en el emocionante mundo del desarrollo multiplataforma con DART y FLUTTER? Aprende las bases con esta guía esencial y descubre las herramientas revolucionarias que están transformando el panorama del desarrollo de aplicaciones nativas. Flutter es un marco de trabajo que pertenece a Google y que ha revolucionado el desarrollo multiplataforma móvil, ya que ...
    Disponible

    $ 84,000.00

    U$ 21,50 19,74 €

  • ANÁLISIS Y MINERÍA DE TEXTOS CON PYTHON
    CABALLERO ROLDÁN, RAFAEL / MARTÍN MARTÍN, ENRIQUE / RIESCO RODRÍGUEZ, ADRIÁN
    ¿Te has preguntado cómo podemos analizar y comprender rápidamente grandes cantidades de información textual en la era digital? En 'Análisis y minería de textos con Python', los reconocidos autores Rafael Caballero, Enrique Martín y Adrián Riesco te presentan una guía exhaustiva sobre el fascinante mundo del análisis de textos con Python, el poderoso lenguaje de programación.Est...
    Disponible

    $ 48,000.00

    U$ 12,29 11,28 €

  • PROGRAMACIÓN ORIENTADA A OBJETOS EN JAVA. BUENAS PRÁCTICAS
    HERNÁNDEZ BEJARANO , MIGUEL
    En el quehacer diario de la docencia, y más concretamente en el área de la programación, surgen muchos temas, talleres y ejercicios para trabajar con los estudiantes. En tal sentido, este libro es el resultado de varios años de experiencias donde se retroalimentan carencias y éxitos en busca de buenas prácticas de la Programación Orientada a Objetos (POO); para tal efecto, se u...
    Disponible

    $ 84,000.00

    U$ 21,50 19,74 €

  • DESARROLLO DE APLICACIONES WEB CON JAKARTA EE
    CASTILLO , CÉSAR FRANCISCO
    ¿Desea desarrollar aplicaciones innovadoras y adaptadas a las necesidades del mercado mundial? Las aplicaciones empresariales constituyen el pilar fundamental del desarrollo de aplicaciones en la actualidad. Jakarta EE ofrece un conjunto de tecnologías listas para ser usadas con mucha facilidad, al permitir construir no solo aplicaciones robustas, escalables y fácilmente manten...
    Disponible

    $ 125,000.00

    U$ 32,00 29,38 €

  • JAVA Y EL PATRÓN MODELO-VISTA-CONTROLADOR (MVC)
    PINZÓN NÚÑEZ, SONIA ALEXANDRA / RODRÍGUEZ GUERRERO, ROCÍO / VANEGAS, CARLOS ALBERTO
    Java y el patrón Modelo-Vista-Controlador (MVC) es un libro que tiene como objetivo trabajar con el lenguaje de programación Java en lo referente con las estructuras de control, la programación orientada a objetos, los patrones de diseño, la interface gráfica de usuario, los gráficos, el manejo de eventos y la persistencia (archivos de flujo y bases de datos). Todo esto impleme...
    ¡Última unidad!

    $ 35,000.00

    U$ 8,96 8,23 €

  • MATEMÁTICA DISCRETA CON APOYO DE SOFTWARE 2021
    VILCHEZ QUESADA, ENRIQUE
    La matemática discreta es parte fundamental del estudio de las ciencias de la computación. El presente libro, aborda contenidos esenciales relacionados con este campo, por medio de la teoría clásica, el desarrollo de ejemplos y la aplicación didáctica del paquete de uso libre “Vilcretas”, creado por el autor, que añade 232 comandos al software Wolfram Mathematica. Este paquete ...
    ¡Última unidad!

    $ 125,000.00

    U$ 32,00 29,38 €