HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN, KERAS, AND TENSORFLOW

HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN, KERAS, AND TENSORFLOW

CONCEPTS, TOOLS, AND TECHNIQUES TO BUILD INTELLIGENT SYSTEMS

AURÉLIEN GÉRON

$ 310,000.00
IVA incluido

U$ 82,55 68,94 €

No disponible
Editorial:
VARIAS
Año de edición:
2019
Materia
Libros para importacion
ISBN:
978-1-4920-3264-9
Páginas:
819
$ 310,000.00
IVA incluido

U$ 82,55 68,94 €

No disponible
Añadir a favoritos

u003cpu003eThrough a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.u003c/pu003e u003cpu003eBy using concrete examples, minimal theory, and two production-ready Python frameworks--Scikit-Learn and TensorFlow--author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.u003c/pu003e u003culu003e u003cliu003eExplore the machine learning landscape, particularly neural netsu003c/liu003e u003cliu003eUse Scikit-Learn to track an example machine-learning project end-to-endu003c/liu003e u003cliu003eExplore several training models, including support vector machines, decision trees, random forests, and ensemble methodsu003c/liu003e u003cliu003eUse the TensorFlow library to build and train neural netsu003c/liu003e u003cliu003eDive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learningu003c/liu003e u003cliu003eLearn techniques for training and scaling deep neural netsu003c/liu003e u003c/ulu003e

Artículos relacionados